
MPC-WORKSHOP JUNI 2022

Measuring similarity for technical product
descriptions with a character-level siamese

neural network
Simone Falzone, Tobias Münster, Gabriele Gühring

Abstract—As part of the inventory process or when two
companies merge and the enterprise resource planning
system is taken over, databases with descriptions of
technical parts are compared to get an overview of
available parts. However, not all entries are created
automatically, as the parts are recorded on site by
employees and entered manually, with varying part IDs
and descriptions. Therefore, it is of interest for a company
to use a suitable method that is able to read techni-
cal documents and perform an automated comparison
between employee information and the inventory data
of an Enterprise Resource Planning system. We use a
Manhattan Long Short-Term Memory network in order
to measure sentence similarity between two entries of
an Enterprise Resource Planning systems. The model is
evaluated on industry data consisting of technical product
descriptions. It outperforms models employing methods
of substring analysis, classical machine learning methods
as well as deep learning models with pre-trained word-
embeddings.

Index Terms—Siamese deep neural networks, Sentence
similarity, Character-level, Technical language proces-
sing, Technical product descriptions

I. INTRODUCTION

In reconciliation of inventory data all parts must be
linked to the physical records. This requires that the
digitally recorded items and their characteristics are
matched with the items listed in the existing Enterprise
Resource Planning (ERP) systems as part of the inven-
tory. During the initial inventory of fixed parts, items
are often recorded that are not clearly identified but
already have part numbers entered in the ERP system.
In some cases even two systems are fused and different
part IDs or numbers have to be matched. The challenge
in matching is to assign the corresponding data records
in the ERP system to the articles found. In addition
to tracking inventory data, it is also necessary for a
company to keep track of the condition of all parts. The
problem, as shown in [1], is that an inventory manage-
ment system sometimes is fed with new data based on
the input of data by maintainers related to equipment
inspections, diagnostics and corrective actions. As a
result, the data in a Computerized Maintenance Ma-
nagement System (CMMS) may contain unstructured

Simone Falzone, Tobias Münster, and Gabriele Gühring
Gabriele.Guehring@hs-esslingen.de. Faculty Computer Science and
Engineering, University of Applied Sciences Esslingen, 73732 Ess-
lingen, Germany.

Table I
EXEMPLARY DESCRIPTIONS OF TECHNICAL TEXT

No. Product Description

1 EE80251S1-000U-A99 - Sunon Sleeve Bearing Fan
2 18B11029-TA-1764-1 Tubeaxial Exhaust Fan 1Hp
3 Insulated Ferrule Single Wire 18 Awg

raw text or inconsistent data with, e.g. missing part
IDs. Most data in a CMMS can not be used for Natural
Language Processing (NLP) diagnostics and analysis,
as most out-of-the-box language processing pipelines
are designed for non-technical language. In Table I we
present examples of technical language description as
it can be found in product description databases.

Furthermore, as described in [2], product matching
is a crucial aspect for e-commerce portals that combine
offers from multiple merchants to allow the user to find
the best price for a specific product or efficiently find
matching products from a variety of merchants.

In order to analyse technical textual data, such as
inventory descriptions, the scientific community has
successfully applied Natural Language Processing to
its text-based technical data such as an affinity propa-
gation clustering [3], a combination of bidirectional
Long Short-Term Memory (LSTM) and conditional
random field (CRF) for the task of named entity
recognition [4], extracting information from clinical
text data using the UMLS MetaMap Transfer (MMTx)
application and a negation detection algorithm called
NegEx [5].
We present in this paper a deep learning model espe-
cially useful for technical data consisting of part num-
bers, part IDs, units etc., which circumvents common
pitfalls by learning important features of the input data,
as for example shown in Table I or in Table VI.

II. RELATED WORK

In NLP there are several methods to determine the
similarity of words or sentences. A string based ap-
proach is presented in [6]. The Basic Local Alignment
Search Tool (BLAST) algorithm used there examines
two protein or gene sequences for their similarity. This
approach can be adapted to regular or technical sen-
tences. It is a dynamic programming approach which

1

mailto:Gabriele.Guehring@hs-esslingen.de

MEASURING SIMILARITY FOR TECHNICAL
PRODUCT DESCRIPTIONS WITH A

CHARACTER-LEVEL SIAMESE NEURAL NETWORK

compares sentences at the character level. Equality is
defined by the identical sequence of local and global
characters in two sentences, with unequal characters
being deleted from the sequence.

The approach of [2] uses descriptive statistics for
technical product matching from which they combine
three metrics in one sum, which additionally can be
weighted by the hyperparameters α, β and γ. The Term
Frequency-Inverse Document Frequency (TFIDF) is
used for describing how often a certain word occurs
in a text. The second metric is the Term Partition
Relevance (TPR) and describes in which text partition
a word occurs most frequently. Finally, the value of
the Term Type Partition Relevance (TTPR) is added,
which describes the probability of occurrence e.g. of a
certain product category in the different text partitions.

In [7] an unsupervised learning algorithm is propo-
sed to solve the problem of matching product titles
based on the morphological analysis of the titles of
the products. They present an algorithm that operates
in two phases. In the first phase combinations of the
words of the titles are computed and several statistic
measures are recorded. In the second phase we used
the gathered statistical information to assign a score
to each computed combination. The combination with
the highest score is then declared as label of the cluster
which contains each product.

The field of NLP has received much public attention
due to the successes of language models such as BERT
[8], T5 [9] or GPT-3 [10]. One area of NLP is extra-
ctive question-answering, which can be viewed as a
special case of text classification. Given a interrogative
sentence and multiple candidate answers, the task is to
classify each candidate answer as correct or not [11].
Contrary to [7] our approach is a supervised approach
since we need a training data set to train our character
embedding. However, it is possible to use our model
on different problems and so as in [8] to implement a
pretrained character embedding.

Common approaches for computing a semantic em-
bedding of words are GloVe [12] and Word2Vec [13],
which create embeddings based on their context and
frequency of co-occurence in a text corpus. The idea
is to create a vector space in which the position of a
word describes how (un-)similar it is to its surrounding
words. In our proposed model we do not use a pretrai-
ned word embedding, instead the embedding process
is done within the training phase.

As for comparing or matching two sentences with
each other, given their word or character-level vector
representation, siamese neural networks and their deep
neural network variants are used [11]. This architecture
is utilized in [14], where a similarity metric on variable
length character sequences is learned. The model com-
bines multiple character-level bidirectional LSTMs in a
siamese architecture. It learns to project variable length
sequences into a fixed dimensional embedding space

by using information about the similarity between pairs
of strings.

In our work we add several convolutional layers to
a siamese Manhattan-LSTM (MLSTM) for measuring
sentence similarity. Our temporal convolutional neural
network is inspired by the architecture of [15], which
learns abstract knowledge about words and sentences
on the basis of individual characters and generates a
word embedding from this. Furthermore, our architec-
ture is inspired by the siamese MLSTM of [16], which
reads in two sentences given their word embedding
representation using a siamese LSTM and generates
a context between the words. From this LSTM repre-
sentation of the sentences a similarity score is calcu-
lated using a similarity layer employing the L1-Norm.
We evaluate our model against the established BERT
language model with a WordPiece Model (WPM) as
presented in [17]. With a WPM, the vocabulary also
contains partial words, frequent endings and single
numbers and letters. This makes it possible to divide
unknown words into smaller known words. Thus, word
embeddings can be created for unseen words.

III. SIMILARITY BASED ON WORDPIECE MODEL

The comparison of sentences based on their simila-
rity is a well-known problem from the field of Natural
Language Processing for which several pre-trained
models are already available. One of the breakthroughs
in the field of NLP is published in [8] presenting a mo-
del called Bidirectional Encoder Representations from
Transformers (BERT). We try to establish a baseline
with the BERT model and check if, thanks to the WPM
used, sentences consisting of non-natural language, i.e.
the names and IDs of (electronic) parts in an inventory
process, can also be successfully compared.

We use a German BERT-model which is published
on Hugging Face1 and presented in [18], because
in our first dataset, presented in section VI-A, the
names, IDs or descriptions contain, if at all, mostly
German expressions. The model is trained on German
Wikipedia entries, the OpenLegalData dump [19] and
several German news articles.

Our main goal is comparing two IDs, numbers and
names of inventory parts in order to see if they are
identical. For the comparison of the two parts, the
most important attributes of labeled machine parts
are extracted from the data. These include the part
number, which uniquely identifies a component, the
type of the part which is described in more detail
in section VI-A and a short description as well as
the manufacturer name. Subsequently, an embedding
is created for each attribute, this is done for both
parts that are compared with each other. The similarity
of two technically described parts is calculated using
cosine similarity like in [20] by comparing a word

1https://huggingface.co/transformers/pretrained_models.html

2

MPC-WORKSHOP JUNI 2022

Table II
ACCURACY WITH PRE-TRAINED GERMAN BERT-MODEL

(DEPENDING ON TRESHOLD T)

T Accuracy

85 43.912
90 70.220

embedding of each attribute of the first part with the
corresponding word embedding of the second part. To
obtain the dependency of all attributes, the results of
the obtained similarity values are averaged over all
attributes.

We have defined two different threshold values for
the evaluation, denoted by T . If the calculated simi-
larity of the two parts is greater than or equal to T ,
they are classified as equal, otherwise as unequal. The
accuracy is then calculated for the classified com-
ponents as in equation (3) section VI-D. The selected
values for T and the achieved accuracy is shown in
Table II.

The results in Table 2 show that the pre-trained
BERT model does not perform well for our use case
of the comparison of a technical description of parts.
We therefore pursue in the following sections another
approach based on generating an intrinsic word em-
bedding with a Convolutional Neural Network (CNN)
which leads to higher accuracy on our training and
test data set.

IV. DATA AUGMENTATION FOR TEXT BASED DATA
SETS

We first use data augmentation for training a more
robust model. Data augmentation, commonly used in
image processing, encompasses multiple techniques
that enhance the size and quality of training datasets
such that better Deep Learning models can be built. It
acts as a regularizer and helps reduce overfitting when
training a machine learning model [21]. Further, we
assume that by increasing the amount of text artifacts,
such as missing word/letter or swapped words, the
robustness and reliability of our model is improved.
To do this, we use aspects of the Easy Data Aug-
mentation (EDA) suite as in [22], which demonstrates
performance improvements of NLP models by using
augmentation techniques that are loosely subjected to
those used in computer vision. The following section
describes the EDA suite briefly, when it is applied to
real word non-technical sentences.

Each sentence in a database is given the opportunity
to be selected for augmentation using one of the follo-
wing operations, which are chosen at random. Further,
synonyms are found in text by employing a dictionary.
The synonyms are then processed differently according
to the selected operation.

1) Synonym Replacement (SR): Select N1 words
randomly from the sentence that are not stop

words. Replace each of these words with a
randomly chosen synonym.

2) Random Insertion (RI): Find a random syn-
onym for a non-stop word in the sentence. Insert
that synonym into a random position in the
sentence. Do this N2 times.

3) Random Swap (RS): Choose two words in the
sentence at random and swap their positions. Do
this N3 times.

4) Random Deletion (RD): Delete each word in
the sentence with probability pRD.

Additionally, an individual parameter αi, for i =
1 . . . 3 is calculated for the operations SR, RI and
RS, by αi = Ni

L , where L denotes the length of
the sentence. Each αi denotes the amount of words
in percent which shall be subjugated to its respective
operation.

Ni may vary, depending on the αi value for its
respective operation. This is due to the assumption,
that longer sentences can cope easier with manipulation
before losing their assigned label. Finally a parameter
naug can be chosen by the user, which indicates how
many sentences are to be generated from the original
one.
We basically follow the EDA implementation, except
that in our algorithm we no longer rely on an English
dictionary to identify words. Instead, we split the string
by the whitespace character and call each sequence of
characters a word. Consequently, we can not and do
not use the functionality SR or RI in our setup. As
for the parameters α3, which denotes the amount of
characters subject to the RS operation in percent, and
pRD, which denotes the probability of an individual
character being subject to the RD operation in percent,
we select the value of 0.2 for both parameters and set
naug to 9. These parameters are inspired by [22] as
reasonable performance gains are to be expected.

V. SIAMESE CNN-MLSTM

In this section we introduce our architecture for mea-
suring whether two inputs of technical product descrip-
tion data classify the same product. The architecture is
based on the character-level convolutional neural net-
work presented in [15] for learning important features
of the input sentences and the siamese LSTM shown
in [16] for finding sequential patterns and calculating a
similarity value. Since we are evaluating whether two
product descriptions match to the same product we
measure the success of our model by calculating an
accuracy or an F -score as in [23] or [24], although we
really are interested about a statement of how similar
two product descriptions are.

A. Model Architecture

The architecture of the proposed siamese CNN-
MLSTM is shown in Fig. 1. The model takes two

3

MEASURING SIMILARITY FOR TECHNICAL
PRODUCT DESCRIPTIONS WITH A

CHARACTER-LEVEL SIAMESE NEURAL NETWORK

Table III
CONVOLUTION LAYERS USED IN OUR ARCHITECTURE. NO

LAYER USES STRIDE AND ALL POOLING LAYERS ARE
NON-OVERLAPPING.

Layer Conv1D
Filters

Conv1D
Kernel Size

MaxPooling1D
Size

1 256 7 3
2 256 7 3
3 256 3 N/A

input texts, here named Sentence 1 and Sentence 2,
and outputs the probability that both inputs describe the
same part. Both sentences are passed into the model in
the form of a character embedding matrix. Our siamese
CNN-MLSTM consists of several sequential layers:
(a) convolution stacked with max-pooling layers, (b)
feed forward LSTM, (c) similarity layer and (d) a
sigmoid classification layer. Given the input sentences,
the convolutional layers learn a specific feature repre-
sentation of the sentences, which are down-sampled
for the maximum presence of a feature, which is then
passed to the LSTM layer. The LSTM layer operates
on the feature map of the last convolution layer and in
turn outputs an internal feature representation from the
last LSTM cell, which encodes the sequential patterns.
We follow the assumption of [16] that the hidden-state
values of the last LSTM cell encode its respective
input sentence, all of which is therefore passed into
a similarity layer. The similarity layer applies the L1-
Norm to both LSTM cells hidden-state values from
each input sentence. Its output is finally passed into a
sigmoid layer for the classification of whether the input
sentences are similar or not. More details about each
of the layers are shared in the following subsections.

B. Sentence Encoding

At the beginning, each character of the input sen-
tences of variable length L is converted to lower
case and encoded. Here we denote by sentence the
concatenation of the part description consisting of
IDs, names, types, manufacturer, etc. The encoding
is done with a fixed alphabet of length m for the
language defined here. The sentences are then en-
coded by a 1-out-of-m encoding (1-hot encoding). The
sentence is first divided into an array of individual
tokens (characters). Then each token is replaced by
its corresponding vector of length m. The result is an
array of length L consisting of vectors of length m,
which make up the character m×L embedding matrix
mentioned in section V-A. If a sentence exceeds the
length defined by L = 70, all characters exceeding
the limit are ignored. If a sentence is shorter than
L characters, it is padded to length L by adding the
zero vector. In addition, an UNK (Unknown) token is
introduced to avoid equating an out-of-vocabulary error
with padding. Therefore our alphabet, minus the UNK
token is given by the following characters:

abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:”’/
\{}|_@#$%^&*~‘+-=<>()[]

C. Learning Sentence Representation

At the core of the model is a CNN structure, which
operates on a character-level input, but outputs a word-
vector representation. The idea of the temporal 1D-
Convolution is that through its filters a character-n-
gram is created. Through stacking convolution ope-
rations and clever use of max-pooling, an understan-
ding of word structures/patterns is learned which is
specific to the task. The architecture consists of a
Conv1D-MaxPooling1D sequence which is described
in Table III. The initial weights and biases of the
Conv1D elements are normally distributed with the
parameters (0.0, 0.05) for mean and standard deviation.
The structure of the CNN follows loosely the one
presented in [15], but deviating in size of the Conv1D-
MaxPooling1D sequence.

D. Sequential Patterns and Sentence Similarity

Subsequently, the resulting feature map of the final
convolution layer with the dimensions din = 3×256 is
passed to the LSTM layer, which now learns a mapping
from dimension din to dimension drep = 64. With drep
being the dimension of the final vector representation
of the sentence, encoded by the last hidden state of the
LSTM layer [16]. Finally the LSTM representations of
the left and right input sentences are compared by a
predefined similarity function g : IRdrep × IRdrep → IR
(based on the L1-Norm). Let hleft

64 be the hidden-state
representation of the last LSTM cell of the left input
and hright

64 of the right input. With ||x||1 denoting the
L1-Norm, the similarity is computed as follows

g(hleft
64 , hright

64) = exp(−||hleft
64 − hright

64 ||1) (1)

The final layer of our architecture is a single sigmoid
node, which learns the probability of two inputs being
similar or not.

VI. EXPERIMENTAL ANALYSIS

Our model for mapping inventory datasets is trained
on two datasets, both describing technical parts or
products. First, we use a proprietary dataset provided
by a company dealing with machine parts. The second
is a publicly available dataset from Kaggle2 that is
similar to the first dataset but consists of descriptions
of electrical devices such as smartphones or television.
The data is also used in [7] for the matching of product
titles in order to compare parts retrieved by a user
or marketer by an online search to compare similar
products. This is comparable to our use case where
we try to compare parts from different data sources,

2https://www.kaggle.com/lakritidis/product-clustering-matching-
classification

4

MPC-WORKSHOP JUNI 2022

Figure 1. Illustration of our model architecture

Table IV
EXAMPLE OF TWO IDENTICAL PARTS WITH DIFFERENT

DESCRIPTION

Sentence 1 Sentence 2

MLV12-54-G32/124
Lichtschranke,
Reflexion; RW

208637 Pepperl + Fuchs
Lichtschranke
MLV12-54-G/32/124 208637
10 - 30 1 St.

e.g. from different ERP systems of a company and
determine whether both parts are the same or not. Both
data sets contain approximately 80.000 records.

A. Proprietary dataset

Since our main goal is to match captured parts with
existing parts in an ERP system, i. e. as part of an
inventory, we have two parts of datasets. First the
dataset consisting of the entries in the ERP system,
which we consider as the single source of truth.
In the following the description of these parts will
be referenced as Sentence 1. Second there is a list
of parts which are labeled differently either because
they are manually labeled or because they belong to
another system. They contain slight deviations in the
description or part number, these parts are referred to
as Sentence 2. It is for example quite often the case
that when entering a component, the part number is
entered with spaces instead of hyphens or the product
name is prefixed e.g. with the manufacturer brand. Also
it possible that in some cases the description is used to
add a detailed product description in natural language,
which leads to a significant fluctuation in the length of

Table V
ATTRIBUTES OF BOTH SENTENCES 1 AND 2

Attribute Description

Part number Manufacturer part number

Type Addition to the manufacturer
part number to make the part
number unique

Description Contains the title and a de-
scription of the part

the sentences. An example of two matching parts with
a slightly different descriptions is shown in Table IV

For the training dataset we label the Sentence 2
dataset with either 0 or 1, depending on whether
the corresponding part matches the entry in the ERP
system. Table V shows the attributes of one part and
a short description of the attribute.

In order to use the data for our use case it is
necessary to transform it into Sentences 1 and 2.
Therefore the individual attributes from Table V are
concatenated divided by blanks, starting with a part
number and ending with a description. The maximum
length of a sentence consists of 70 characters, if a
sentence is longer it is truncated as described in section
V-B. Table VI shows some example records of the
resulting dataset.

The data exhibits a strong skewness as there are
many more records of non matching parts than there
are for matching parts. This means the target y = 1 is
subrepresented, which could lead to wrong assumpti-
ons by the model. Therefore the data is augmented as
described in section IV so both values for y are equally
distributed.

5

MEASURING SIMILARITY FOR TECHNICAL
PRODUCT DESCRIPTIONS WITH A

CHARACTER-LEVEL SIAMESE NEURAL NETWORK

Table VI
EXAMPLE RECORDS OF TRAINING DATASET FOR PROPRIETARY

DATASET

No. Sentence 1 Sentence 2 Label
y

1 4923+14640
A40.891.00 Filter
1020x950x20mm
frame

26-4923 Burner Cover -
Southbend,
SOU1182778

0

2 TIF15.AUXAAC-
22596 Touch LED 15
TFT Display

IQ AUTOMATION Flat-
man TFT Display, Mo-
del: FS170A4GSDDH3

0

3 MLV12-54-G32/124
Lichtschranke, Refle-
xion; RW

208637 Pepperl + Fuchs
Lichtschranke MLV12-
54-G/32/124 208637 10
- 30 1 St.

1

B. Kaggle Product Dataset

The second dataset we use for training is a publicly
provided dataset on Kaggle3 titled "Product Clustering,
Matching & Classification" [7], which we call in the
following Kaggle Product Dataset. This dataset is very
similar to the proprietary one. It consists of a product
title, which already contains all attributes like a part
number, the type and a short description of the part.
The different parts are always assigned to a certain
cluster, which we use here as a single source of truth
and corresponds to the entries from the ERP system
from section VI-A. Table VII shows a few example
records of the Kaggle Product Dataset with the relevant
attributes.

The training dataset is constructed by using the
cluster label as Sentence 1 and the product title as
Sentence 2. Table VII shows sample data records of
the Kaggle Product Dataset. The rows of Table VII
show an example data record of the Kaggle Product
Dataset. Here the product title and the cluster label are
describing the same part. Since all parts in the data
set are assigned to the correct cluster label, the entries
are labelled with y = 1. To obtain also non matching
records the data is adjusted in a preprocessing step so
that a random product is assigned a wrong cluster label
and gets the target value y = 0, e.g. No. 2 in Table
VIII. This gives us a very similar data set as listed
in Table VI which compares well with the proprietary
data.

C. Model Training

We train the parameters of the model with the objec-
tive of maximizing its prediction accuracy given the
target labels in a training dataset. For each of our two
datasets an independent model is trained and evaluated
with a 5-fold cross-validation. The hyperparameters
are determined by a simple grid search, choosing the

3https://www.kaggle.com/lakritidis/product-clustering-matching-
classification

Table VII
EXAMPLE RECORDS OF KAGGLE PRODUCT DATASET

No. Product Title Cluster Label

1 bosch serie 6 built under
freezer in white

Bosch GUD15A50GB
Integrated

2 lec cf61lw 60 litre chest
freezer white a rated

Lec CF61LW White

3 canon ixus 185 digital
camera silver

Canon IXUS 185

Table VIII
EXAMPLE RECORDS OF KAGGLE PRODUCT DATASET

No. Sentence 1 Sentence 2 Label
y

1 bosch serie 6 built under
freezer in white

Bosch GUD15A50GB
Integrated

1

2 lec cf61lw 60 litre chest
freezer white a rated

Bosch GUD15A50GB
Integrated

0

ones that give the best results. We used the Binary
Cross-Entropy (BCE) as our loss function. Let ŷ be
the predicted label and y be the true label then the
BCE is calculated as:

BCE(ŷ, y) = −(y · log(ŷ)+ (1− y) · log(1− ŷ)) (2)

Finally, the algorithm used for training our model is
stochastic gradient descent (SGD) with a minibatch
size of 32 and using momentum as in [26], [27]. Our
implementation is done using KERAS (TensorFlow 2)
[28].

D. Experimental Analysis

Our model is evaluated with a 5-fold stratified cross-
validation and accuracy is used as metric. Let TP be
the true positives and let TN be the true negatives [29],
then the accuracy is calculated as.

accuracy =
TP + TN

N
, (3)

where N denotes the total count of all records in the
dataset [30].

Furthermore, the recall and precision are calculated
in order to calculate the F -score. Recall is the fraction
of true events and precision is the fraction of detections
reported by the model that are correct [30]. Let TN
be the false negatives and let FP denote the false po-
sitives [29], then the recall and precision are computed
as shown in equation (4) and (5).

Recall =
TN

TN + FP
(4)

Precision =
TP

TP + FP
(5)

6

MPC-WORKSHOP JUNI 2022

Table IX
ACCURACY AND F-SCORE OF OUR SIAMESE CNN-MLSTM

Dataset Optimizer Learning-rate Momentum Avg. Loss Avg. accuracy Avg. F -score

Proprietary SGD 0.1 0.9 0.172 94.837 0.949
Proprietary ADAM 0.001 0.9 0.232 92.760 0.929
Kaggle SGD 0.1 0.9 0.185 93.797 0.937
Kaggle ADAM 0.001 0.9 0.249 90.944 0.909

Table X
F-SCORES FROM RELATED WORKS

Paper Method Dataset F -score

[2] Combining several
methods from descriptive
statistics

Not
available

0.5 - 0.67

[25] Uses tailored approaches
for product matching based
on a preprocessing of pro-
duct offers to extract and
clean new attributes usable
for matching.

Not
available

∼ 0.4 - 0.69

[7] Morphological analysis of
the titles of the products.

Kaggle
Product
Dataset

0.66

The F -score is then finally calculated as [30]:

F -score = 2 · Precision ·Recall

Precision+Recall
(6)

The results of the 5-fold cross-validation are avera-
ged and can be found in the Table IX.

In each of our model evaluations, we achieve a
value above 90% for both Precision and Recall. Several
papers deal with similar use cases as we do. As can be
seen from Table X our model outperforms all F -scores
achieved by the others. The best comparison is between
our results and those of [7], as they are working on the
same dataset.

VII. CONCLUSION

In this paper we introduce a new neural network
architecture for matching products or product parts
with a technical description. Even today, matching
product descriptions is a difficult problem in machine
learning as also seen in [7] and [25]. The benefit
of automated and reliable product matching is not
only practically relevant for the matching of manually
recorded parts with existing parts in an ERP system it
also can be used in online shopping, since it allows the
users to compare products from various suppliers. The
traditional string similarity metrics do not perform well
in product matching as shown in [2]. We also show
that pre-trained WordPiece models are not suitable to
process technical texts like product descriptions. The
reason for this is that the models are trained on a
text corpus consisting of natural language texts. In our
experiment with a WordPiece model we reached an
accuracy of about 70%.

However, it could be successfully shown that a neu-
ral network is able to build up its own understanding
of word patterns without pre-computed statistics about
word distributions. The architecture of the developed
model, shown in section V-A, is a new approach for
evaluating sentence similarities at a character level. Our
model achieved an accuracy of up to 94.8% and an
F -score of up to 93% when working with a simple
forward LSTM in the Siamese CNN-MLSTM.

REFERENCES

[1] M. P. Brundage, T. Sexton, M. Hodkiewicz, A. Dima, and
S. Lukens, “Technical language processing: Unlocking main-
tenance knowledge,” Manufacturing Letters, vol. 27, pp. 42–
46, 2021.

[2] A. Thor, “Toward an adaptive string similarity measure for
matching product offers,” in INFORMATIK 2010. Service
Science ? Neue Perspektiven für die Informatik. Band 1, K.-
P. Fähnrich and B. Franczyk, Eds. Bonn: Gesellschaft für
Informatik e.V, 2010, pp. 702–710.

[3] X. Chen, H. Xie, F. L. Wang, Z. Liu, J. Xu, and T. Hao, “A
bibliometric analysis of natural language processing in medical
research,” BMC medical informatics and decision making,
vol. 18, no. Suppl 1, p. 14, 2018.

[4] M. Gridach, “Character-level neural network for biomedical
named entity recognition,” Journal of biomedical informatics,
vol. 70, pp. 85–91, 2017.

[5] S. Meystre and P. J. Haug, “Natural language processing to
extract medical problems from electronic clinical documents:
performance evaluation,” Journal of biomedical informatics,
vol. 39, no. 6, pp. 589–599, 2006.

[6] W. R. Pearson, “An introduction to sequence similarity ho-
mology searching,” Current protocols in bioinformatics, vol.
Chapter 3, 2013.

[7] L. Akritidis and P. Bozanis, “Effective Unsupervised Matching
of Product Titles with k-Combinations and Permutations,”
in 2018 Innovations in Intelligent Systems and Applications
(INISTA). Thessaloniki: IEEE, Jul. 2018, pp. 1–10.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of Deep Bidirectional Transformers for Language
Understanding,” arXiv:1810.04805 [cs], May 2019.

[9] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-to-
text transformer,” Journal of Machine Learning Research,
vol. 21, no. 140, pp. 1–67, 2020. [Online]. Available:
http://jmlr.org/papers/v21/20-074.html.

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei, “Language models are few-shot learners.”
[Online]. Available: https://arxiv.org/pdf/2005.14165.

[11] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chen-
aghlu, and J. Gao, “Deep learning–based text classification,”
ACM Computing Surveys, vol. 54, no. 3, pp. 1–40, 2021.

7

http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/pdf/2005.14165

MEASURING SIMILARITY FOR TECHNICAL
PRODUCT DESCRIPTIONS WITH A

CHARACTER-LEVEL SIAMESE NEURAL NETWORK

[12] Jeffrey Pennington, Richard Socher, and Christopher D.
Manning, “Glove: Global vectors for word representation,”
2014. [Online]. Available: https://nlp.stanford.edu/projects/
glove/.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space.” [Online].
Available: https://arxiv.org/pdf/1301.3781.

[14] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru, “Lear-
ning text similarity with siamese recurrent networks,” Procee-
dings of the 1st Workshop on Representation Learning for NLP,
pp. 148–157, 2016.

[15] X. Zhang and Y. LeCun, “Text understanding from scratch.”
[Online]. Available: https://arxiv.org/pdf/1502.01710.

[16] J. Mueller and A. Thyagarajan, “Siamese recurrent archi-
tectures for learning sentence similarity,” in Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, ser.
AAAI?16. AAAI Press, 2016, pp. 2786–2792.

[17] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
J. Klingner, A. Shah, M. Johnson, X. Liu, Å. Kaiser,
S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,
G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean,
“Google’s neural machine translation system: Bridging the gap
between human and machine translation.” [Online]. Available:
https://arxiv.org/pdf/1609.08144.

[18] B. Chan, S. Schweter, and T. Möller, “German’s Next Lan-
guage Model,” in Proceedings of the 28th International Con-
ference on Computational Linguistics. Barcelona, Spain (On-
line): International Committee on Computational Linguistics,
2020, pp. 6788–6796.

[19] M. Ostendorff, T. Blume, and S. Ostendorff, “Towards an
Open Platform for Legal Information,” in Proceedings of the
ACM/IEEE Joint Conference on Digital Libraries in 2020.
Virtual Event China: ACM, Aug. 2020, pp. 385–388.

[20] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence Em-
beddings using Siamese BERT-Networks,” arXiv:1908.10084
[cs], Aug. 2019.

[21] Connor Shorten and Taghi M. Khoshgoftaar, “A survey on
image data augmentation for deep learning,” Journal of Big
Data, vol. 6, no. 1, pp. 1–48, 2019.

[22] J. Wei and K. Zou, “Eda: Easy data augmentation techniques
for boosting performance on text classification tasks.” [Online].
Available: https://arxiv.org/pdf/1901.11196.

[23] D. Giampiccolo, H. T. Dang, B. Magnini, I. Dagan, E. Caprio,
and B. Dolan, “The fourth pascal recognizing textual entailm-
ent challenge,” in TAC 2008. Citeseer, 2008, p. 545.

[24] S. Sultana and I. Biskri, “Identifying similar senteces by
using n-grams of characters,” in Recent Trends and Future
Technology in Applied Intelligence. Cham: Springer, 2018,
pp. 833–843.

[25] H. Köpcke, A. Thor, S. Thomas, and E. Rahm, “Tailoring
entity resolution for matching product offers,” in Proceedings
of the 15th International Conference on Extending Database
Technology - EDBT ’12. Berlin, Germany: ACM Press, 2012,
p. 545.

[26] B. T. Polyak, “Some methods of speeding up the convergence
of iteration methods,” USSR Computational Mathematics and
Mathematical Physics, vol. 4, no. 5, pp. 1–17, 1964.

[27] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton, “On the importance of initialization and momentum
in deep learning,” International Conference on Machine Lear-
ning, pp. 1139–1147, 2013.

[28] F. Chollet et al., “Keras,” 2015.

[29] C. Sammut and G. I. Webb, Eds., Encyclopedia of Machine
Learning. New York ; London: Springer, 2010.

[30] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, ser.
Adaptive Computation and Machine Learning. Cambridge,
Massachusetts: The MIT Press, 2016.

Simone Falzone received his B.Sc. degree
in computer science from the Hochschule
für Technik Stuttgart in 2020. Since 2020,
he is pursuing his Master’s degree at Hoch-
schule Esslingen. He is currently working
on projects using deep learning for text
analytics.

Tobias Münster received his B.Eng. de-
gree in technical computer science from the
University Esslingen. In 2021 he obtained
his M.Sc. degree in applied computer sci-
ence from the University Esslingen. Since
2022 he is working in the field of automa-
ted driving research.

Gabriele Gühring studied mathematics
and physics at the University of Tübingen.
After completing her Ph.D. in mathematics
she has advised banks and industrial com-
panies throughout Germany in risk con-
trolling, internal models and the valuation
of financial derivatives and has supported
the implementation of trading systems. She
is a professor at Esslingen University of
Applied Sciences since 2008 and gives
lectures in the subjects of mathematics,

statistics and data analytics. Her current publications in the field
of machine learning deal with anomaly detection in time series and
multimodal models of deep learning.

8

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://arxiv.org/pdf/1301.3781
https://arxiv.org/pdf/1502.01710
https://arxiv.org/pdf/1609.08144
https://arxiv.org/pdf/1901.11196

	Introduction
	Related Work
	Similarity based on WordPiece Model
	Data Augmentation for Text Based Data Sets
	Siamese CNN-MLSTM
	Model Architecture
	Sentence Encoding
	Learning Sentence Representation
	Sequential Patterns and Sentence Similarity

	Experimental Analysis
	Proprietary dataset
	Kaggle Product Dataset
	Model Training
	Experimental Analysis

	Conclusion
	References
	Biographies
	Simone Falzone
	Tobias Münster
	Gabriele Gühring

