MPC-WORKSHOP JUNI 2023

RAVENSBURG-WEINGARTEN
W U UNIVERSITY

OF APPLIED SCIENCES

Evaluating encryption methods for the
JTAG-debug port

Soham Sanjay Dekhane, Andreas Siggelkow

Abstract—Debug ports are one of the most important
tools for designing, debugging, configuring and program-
ming, however, they can be very vulnerable to a hacker
with malicious intent. This project describes one of the
many possible solutions to secure this debug port with
the help of hardware based cybersecurity. This solution is
demonstrated by designing a Pseudo-Random-Number-
Generator (PRNG) using VHDL implemented on an
FPGA and the seed exchange secured using the RSA
algorithm.

Index Terms—FPGA, RSA, PRNG, VHDL, LFSR,
Cryptography, JTAG, Debug

I. INTRODUCTION

Cyber threats present enormous risks to individuals,
businesses, and even entire nations in today’s con-
nected world. Hardware cryptography is a vital defense
against these threats. Strong key management and
strong authentication are provided by cryptographic
hardware modules. Only authorized individuals can ac-
cess sensitive information and vital systems because of
these hardware-based cryptographic solutions. Individ-
uals and organizations can reduce the danger of unau-
thorized access, data leakage, and other criminal activ-
ity by utilizing hardware cryptography. Encryption is
used in almost everyday life right from opening garage
doors to credit cards. For such encryptions or crypto-
graphic operations, generation of unique, random and
secure keys is very important. Debug ports can be
extremely helpful in designing embedded systems but
they present a huge vulnerability. A hacker with mali-
cious intent can get physical access of the system using
this debug port can cause a huge damage. The obvious
solution is securing the debug port by limiting the ac-
cess to it by implementing some encryption algorithm.
Hardware based cybersecurity; i.e. integrating cyberse-
curity measures in the processing unit of the embedded
system itself can provide with various advantages; the
biggest being that it is not at all vulnerable to cyber
attacks unless the attacker has physical access to the
hardware. In order to demonstrate such an example,
this project focuses on designing a cryptographically
secure Pseudo-Random-Number-Generator encrypting
it using the RSA algorithm. Pseudo-Random-Number-
Generators (PRNGs) are used for various applications

Soham Sanjay Dekhane, sohamdekhane@gmail.com, Andreas
Siggelkow, andreas.siggelkow @rwu.de. Hochschule Ravensburg-
Weingarten, Doggenreidstrale, 88250 Weingarten.

like Key Generation, Initialization Vectors, Nonces
etc. This makes the output generated by this PRNGs
very crucial. A perfect PRNG should have three main
attributes: Integrity (prevent undesired modification to
the output), Authenticity (allow access only to authen-
tic users) and Confidentiality (prevent secrets from
becoming known to the attackers). One has to make
sure that the PRNG output is not illegally disturbed
i.e. the random output of a PRNG should not become
non-random/predictable. A PRNG could be vulnerable
to plethora of cyber attacks such as Algebraic attack,
State recovery attack, Clock attack etc. Implementing
these attacks makes sure that the output of the PRNG
could be predicated or tampered with by the attacker.
The PRNG should be initialized using a seed value
which will be fed to the PRNG via the debug port.
This seed value should be first encrypted and then
sent to the Device-under-Test (DUT) using the JTAG
interface. This seed value is then decrypted in the
DUT, the output of the PRNG is generated, encrypted
and sent back to the debug interface via JTAG. This
is done so as to secure the generated output of the
PRNG during the exchange via the debug interface
during which it is the most vulnerable. The data does
not have to be secured for operations within the DUT
but only during the exchange via the debug interface.
The hardware consists of a MAX10 FPGA in which
the PRNG as well as the encryption algorithm are
implemented using VHDL.

II. PSEUDO-RANDOM-NUMBER-GENERATOR

A device used to generate a sequence of random
numbers or symbols is called as a Random Number
Generator. Random numbers have been historically
used in many applications ranging from Cryptography,
Simulations, Machine Learning Algorithms, Comput-
ing Applications etc. There are various methods and
algorithms used to generate random numbers. The
generators are called as Random Number generators
as the symbols or numbers generated by them have no
mathematical or statistical relation amongst the gen-
erated sequence of numbers. Once such random num-
ber generator is a Pseudo-Random-Number-Generator
(PRNG). A PRNG is designed using a deterministic
algorithm to produce the sequence of numbers. These
generated sequences pass all the “Statistical pattern
tests for Randomness” but can easily be predicted

mailto:sohamdekhane@gmail.com
mailto:andreas.siggelkow@rwu.de

RW oo
RAVENSBURG-WEINGARTEN
W U UNIVERSITY

OF APPLIED SCIENCES

once the seed value (initial condition) or the algorithm
used to generate the PRNG is known. Hence the term
“Pseudo” is used. A PRNG at best can generate a
total of (2" — 1) number of random numbers and the
same sequence then repeats itself. There are various
algorithms used to build the PRNG namely: Xorshift,
Inversive congruential generator, ISAAC (cipher) (in-
direction, shift, accumulate, add, and count), Blum
Blum Shub, Multiply with carry, Lagged Fibonacci
Generator, Linear Feedback Shift Register, Mersenne
Twister, Linear congruential generator and the Well
Equidistributed Long-period Linear. In this project, the
Linear Feedback Shift register (LFSR) algorithm is
used for designing the PRNG. For designing a PRNG,
a seed value i.e. an initial condition has to be specified
from which the next sequences of the random numbers
are generated. This seed value determines the length
of the PRNG (i.e. the total number of random symbols
or sequences generated before the pattern is repeated).
As discussed before, the maximum possible length of
a PRNG is (2" —1); n being the number of bits of the
seed value. A seed value of Hamming Weigth of n/2
is usually desired, n being the total number of bits in
the seed value. Taps are also set up at desired bits. The
bit values where the taps are located are XORed and
the result of this XOR is placed at the (n — 1) bit,
the rest of the bits are shifted to the right, and the 0"
bit is discarded or vice versa. PRNGs are vulnerable
to various types of cyber attacks such as:

¢ Brute Force Attack: The attacker tries every pos-
sible seed value and checks if the observed se-
quence of numbers is obtained or not.

e Algebraic Attack: The output sequence of the
LFSR can be described by a set of equations that
an attacker can discover using algebraic methods.
As a result, the attacker may be able to figure out
the seed value and forecast future results.

e State Recovery Attack: If the attacker is aware
of the previous results of the PRNG, they can
predict the current as well as the future values of
the PRNG.

¢ Clock Attack: The attacker forces the clock to
skip or repeat certain states of the PRNG which
will allow him to predict the future values of the
PRNG.

e Side-Channel Attack: The attacker can use the
leaked values of the electromagnetic emissions
or the power consumption from the PRNG to
determine the future values of the PRNG.

* Non-Linear Feedback Attack: An attacker could
be able to create a set of equations that describe
the LFSR’s output sequence if it uses non-linear
feedback. As a result, the attacker may be able to
figure out the seed value and predict future results.

e Known Plaintext Attack: An attacker may be able
to detect the state of the LFSR and anticipate
future outputs if they have access to some of the

EVALUATING ENCRYPTION METHODS FOR THE
JTAG-DEBUG PORT

plaintext that was used to generate the pseudoran-
dom sequence.

e Birthday Attack: An attacker might be able to
perform a birthday attack to find collisions in the
key space and recover the key if the LFSR is being
used to create cryptographic keys.

III. THE RSA ALGORITHM

To encrypt the data during exchange or during
debug, the RSA algorithm is implemented. RSA is
the most well known Public Key Encryption method.
It was developed by Ron Rivest, Leonard Adleman
and Adi Samir in 1977 and is a type of asymmetric
encryption method. Using such an algorithm is very
advantageous as a key pair is always generated i.e.
a public key and a private key. The public key is
used for the encryption of the data while the private
key which is used for decryption is kept a secret.
The private key cannot be determined by using the
public key and hence it can be distributed freely or
even be published on websites. This is a pretty huge
advantage of using asymmetric encryption method over
a symmetric encryption method where the same key is
used to encrypt and decrypt the data. The following
steps illustrate the generation of the key for the RSA
algorithm:
1) Select two distinct prime numbers; Assume they
are p and q.

2) Compute their product “n’” such that n =p - q.

3) Calculate the Euler’s totient function p(n) =
(p—1)-(¢g—1).

4) Select an “e” such that 0 < e < [p(n)] and e &
©(n) are coprime i.e ged(e, p(n) = 1).

5) Calculate a “d” such that d mod ¢(n) =1

6) (n,e) is the public key and is used for encryption
while (n,d) is the private key and is used for
decryption.

Once the public and private keys are calculated, the
messages can be encrypted and decrypted as follows:
Let = be the data and y be the encrypted data. Then,
the encryption is done as y = z° mod n while
the decryption is done as = y? mod n. Usually,
x,y,n and d are 1024 bit or more. Security level of
80 bit is offered by RSA when 1024 bit keys are used
while a security level of 128 bit is offered by RSA
when 3072bit keys are used. The RSA algorithm is
vulnerable to cyber attacks as well. By knowing the
product “n”, attackers can try to factorize the product
and try to find out the prime numbers p and g. This
type of cyber attack is known as a factorization attack.
Currently, it is believed that it will be possible to factor
1024 bit values within the next 10 to 15 years, and that
intelligence agencies will likely be able to do it even
sooner [1]. To minimize the risk of such an attack,
it is recommended to choose the RSA parameters of
2048-4096 bits. The RSA algorithm is also vulnerable
to Side-Channel attacks but for such an attack, the

MPC-WORKSHOP JUNI 2023

test logic reser

JTAG Test Access Port (TAP) controller state transition diagram

Figure 1. TAP-FSM

attacker must have access to the RSA implementation.
Attackers try to find leaked information about the
private key through the timing behaviour or power
consumption.

IV. JTAG

Almost all digital systems have a debug interface
[2] with different possibilities to attack the system [3].
This debug logic connects all sub-blocks in the system
by means of a shadow bus system in order to test or
debug it. This could act as a back door which is not
secured. To equip this back door and all connection
points of the debug bus with a lock, is the focus of the
system introduced in the following. It is just the base
system for different cypher/debug pairs, it is the base of
a system evaluation.The lock can be a cypher system.
Parallel to the debug problem is the update over the air
possibility in such systems, especially modern cars and
IoT. Also this back door can be secured by cyphering.
An emulator of this kind has been presented in [4].

The back door itself is the well known JTAG (Joint
Test Action Group) port [5]. The element, which
accesses all logic on chip is the JTAG port together
with the test access port (TAP) controller. The TAP-
Controller is implemented as a finite-state-machine
(Figure 1).

The signal timing is defined as follows: The test
mode select (TMS) will be captured with every rising
edge of test clock (TCK). Also test data in (TDI)
will be taken with the rising edge of TCK. Contrary
to this, test data out (TDO) will be driven with the
falling edge of TCK. So, the wiring to a second chip,
which receives the output of the actual SoC, could be
allowed a delay of one half of the period of TCK.

The FSM has 16 states. Two general states (test
logic reset and run test idle) and seven states for the
instruction register and seven for the data register.
Changing from one state to the other, it is required to

RAVENSBURG-WEINGARTEN
W U UNIVERSITY

OF APPLIED SCIENCES

Instruction Register (IR)

™! CEEEEETE

Data Register (DR

Sy s

sel sel

TDO

Control signals and register loads

Figure 2. JTAG data register

Hardware monitor

(BDM) ARM?7|
AA
control |
addr(31,0) i
dataﬁoﬂgm :0) i .« —
data_in(31:0) e
signals

| |
JTAG Controller

(FDM controller)

Figure 3. ARM7 wrapped by JTAG data registers

LD Q D Q D Q

b Q- > Qq > a
Clock (bito (bitl (bitz

|
|
L—b q D Q b Qo——p q

> Q- > Q- P T > Q
(bitlZ (bit13 (bitlzl (bitlS

Output

Figure 4. 16 bit PRNG

change TMS with the rising edge of TCK according
to the diagram (Figure 1). According to the IEEE
specification many tests will be predefined but for
the debug purpose, the data register (Figure 2) is
the important element. With the data register every
design element in the system-on-chip (SoC) can be
encapsulated (all inputs can be read and written, all
outputs can be read and written) and is under total
control of the TAP controller (Figure 3). Additionally,
all flip-flops in the design are chained up to the so
called scan chain, which is also a JTAG data register.

This is needed for debugging a SoC, but is obviously
also a serious security threat.

To solve this security problem, different cypher
methods on the data stream (TDI to TDO) will be
researched.

RW oo
RAVENSBURG-WEINGARTEN
W U UNIVERSITY

OF APPLIED SCIENCES

V. IMPLEMENTATION
A. PRNG

The Pseudo-Random-Number-Generator is designed
such that it produces 16 bit pseudo random number
sequences by taking a seed value to initialize the
sequence and XORing the bits of the last output by
placing taps at certain bits. When the VHDL program
is reset, the first input is taken as the seed which is
taken through the testbench and that would be the
first output produced by the PRNG. The 16 bit seed
is carefully chosen keeping the Hamming weight of
the seed as 8 in order to get a proper sequence of
outputs. Taps are then placed at bits 4, 13, 15 and
16 i.e. from the previous output, the bit are positions
4, 13, 15 and 16 are XORed, the most significant bit
from the previous out is removed, the remaining bits
are shifted to the left and the result of XOR is placed
at the position of the least significant bit. This 16 bit
number will be the new output of the PRNG. As this
is a 16 bit PRNG, we will have such (26 — 1) i.e.
65535 unique pseudo random outputs. As mentioned
in this paper previously, these outputs can be used for
applications like Key Generation, Initialization Vectors,
Nonces etc. and hence need to be secured during the
debug phase.

B. Encryption during the debug phase

The debug phase for a PRNG is the most critical
phase and also the most vulnerable at the same time.
The seed exchange as well as the exchange of the
outputs is done between the test interface and the DUT
over the debug interface. During this exchange, both
the seed and the generated outputs are vulnerable to
a hacker with malicious intent. To prevent this, in
this project, the seed value and the generated outputs
are secured using the RSA algorithm. For the RSA
algorithm, a set of 64 bit public and private keys are
generated. The seed value is first encrypted using the
public key in the the testbench itself and transmitted
over the debug interface to the DUT. This is then
decrypted in the DUT using the private key and then
given as an input to the PRNG. This is then processed
by the PRNG and the output that is to be transmitted is
again encrypted using the public key and transmitted
over the debug interface.

VI. CONCLUSION AND FUTURE WORK

In this project, the first steps have been taken to
securing the debug interface. It has been demonstrated
how the seed exchange over the debug interface can
be encrypted in order to secure the leak of information
due to a potential cyber attack. Further steps would
include integrating a JTAG Tap controller with the
PRNG and test the encryption using an ASIC tester.
The complete ecosytem for the RSA algorithm also
needs to be created such as a public key and private

20

EVALUATING ENCRYPTION METHODS FOR THE
JTAG-DEBUG PORT

key infrastructure including a database for the keys that
can be used for encryption and decryption purposes.

REFERENCES

[1] Christof Paar and Jan Pelzl. Understanding
Cryptography. Springer, 2010. I1SBN: 978-3-642-
04101-3.

[2] C.F. Kao and H.M. Chen. Hardware-Software Ap-
proaches to In-Circuit Emulation for Embedded
Processors. IEEE Design and Test, 25 (5): 462 -
471, 2008.

[3] Swarup Bhunia, Sandip Ray, and Susmita Sur-
Kolay (Editors). Fundamentals of IP and SoC Se-
curity: Design, Verification, and Debug. Springer,
Cham, Switzerland, 2017. ISBN: 978-3-319-
50055-3.

[4] Gregor Benz and Andreas Siggelkow. Imple-
mentation of a GPS and GSM module into a
Zynq Z7 SoC based emulator tracking system.
Workshop der Multiprojekt-Chip-Gruppe Baden-
Wiirttemberg, 2020.

[5] IEEE Standard for Test Access Port
and Boundary-Scan Architecture. IEEE
Std 1149.1-2013 (Revision of IEEE Std
1149.1-2001), pp.1-444, 2013. 1SBN: doi:

10.1109/IEEESTD.2013.6515989.

Soham Sanjay Dekhane received his
B.Tech. degree in Electronics and Telecom-
munication Engineering from Symbiosis
International (Deemed) University, India in
July 2021. Since September 2021, he is
pursuing his Master’s degree in Electri-
cal Engineering and Embedded Systems at
Hochschule Ravensburg-Weingarten.

Andreas Siggelkow received the academic
degree Dipl. -Ing. in 1988 from the Uni-
versity of Karlsruhe. In 1996, he obtained
his doctorate at the University of Stuttgart
for Dr. -Ing. From 1996 to 2007 he worked
for Infineon on specifications for base-band
processor ASICs. Since 2007, he is a pro-
fessor for ASIC-Design and Computer Ar-
chitecture at the Hochschule Ravensburg-
Weingarten.

	Introduction
	Pseudo-Random-Number-Generator
	The RSA Algorithm
	JTAG
	Implementation
	PRNG
	Encryption during the debug phase

	Conclusion and Future Work
	Biographies
	Soham Sanjay Dekhane
	Andreas Siggelkow

