
MPC-WORKSHOP JANUAR 2024

Improving Hardware Security through
Encryption of JTAG TAP Ports: An

Analytical Comparison of Algorithms, with a
Focus on RSA

Soham Sanjay Dekhane, Andreas Siggelkow

Abstract—In today’s age it is vital to protect our
devices from cyber threats. This research paper explores
the field of hardware-based cybersecurity specifically
focusing on securing Joint Test Action Group (JTAG)
Test Access Ports (TAP). This research evaluates different
encryption algorithms’ effectiveness in enhancing the
security of these ports, which are one of the most widely
used debug ports for embedded systems. This research
focusses on the RSA (Rivest Shamir Adleman) encryp-
tion algorithm analyzing its strengths and weaknesses
compared to other cryptographic methods. Through an
analysis, the aim is to offer insights into selecting the most
robust and efficient encryption techniques for reinforcing
JTAG TAP port’s security. By analyzing and comparing
encryption techniques this research provides insights,
into ongoing efforts aimed at enhancing the security of
embedded systems.

Index Terms—RSA, JTAG, TAP, VHDL, debug, cryp-
tography

I. INTRODUCTION

Cyber threats present enormous risks to individuals,
businesses, and even entire nations in today’s connec-
ted world. Hardware security and trust have become a
pressing issue during the last two decades due to the
globalization of the semi-conductor supply chain and
ubiquitous network connection of computing devices.
Strong key management and strong authentication are
provided by cryptographic hardware modules.[7] Only
authorized individuals can access sensitive information
and vital systems because of these hardware-based
cryptographic solutions. Individuals and organizations
can reduce the danger of unauthorized access, da-
ta leakage, and other criminal activity by utilizing
hardware cryptography. Encryption is used in almost
everyday life right from opening garage doors to credit
cards. For such encryptions or cryptographic operati-
ons, generation of unique, random and secure keys is
very important. Debug ports can be extremely helpful
in designing embedded systems but they present a
huge vulnerability. From the perspective of the security
chain’s resilience, random number generation is a vital

Soham Sanjay Dekhane, sohamdekhane@gmail.com, Andre-
as Siggelkow, andreas.siggelkow@rwu.de.Hochschule Ravensburg-
Weingarten, Doggenreidstraße, 88250 Weingarten.

task in modern encryption and security applications.
In reality, the encryption keys needed for ciphers are
created using random numbers. Therefore, any flaw in
the key generation procedure may allow information
to be leaked that might be exploited to crack even the
most robust cipher [4]. A hacker with malicious intent
can get physical access of the system using this debug
port can cause a huge damage. The obvious solution is
securing the debug port by limiting the access to it by
implementing some encryption algorithm. Hardware
based cybersecurity; i.e. integrating cybersecurity me-
asures in the processing unit of the embedded system
itself can provide with various advantages; the biggest
being that it is not at all vulnerable to cyber attacks
unless the attacker has physical access to the hardware.

II. JTAG

JTAG, also known as the Joint Test Action Group
is an widely-used technology, in the field of digital
testing. Its primary purpose is to ensure that electronic
systems operate correctly and to diagnose any faults
they may have. JTAG consists of components that
work together to make testing processes efficient and
effective. At the core of this system is the Test Access
Port (TAP) which acts as a communication interface
between test equipment and the on chip test logic.
The TAP includes registers like the Instruction Register
(IR) and Data Register (DR) which allow for data
exchange during testing procedures. Through a set of
predefined instructions JTAG can perform tasks such,
as scan testing, memory testing and providing debug
support. The JTAG is a serial communication, four wire
protocol. The four signals TDI, TDO, TMS and TCLK
with TSRT being an extra optional signal are a part of
the JTAG protocol which belongs to the IEEE 1149.1
standard as shown in the image 1. JTAG’s structure and
functionalities provide a seamless flow in the testing
process. The division of the TAP registers into the
IR and DR, along with the availability of various test
instructions, allows for a clear hierarchy and organiza-
tion of operations. This ensures that testing procedures
can be carried out methodically and precisely, leading
to more accurate fault identification and diagnosis.

31

mailto:sohamdekhane@gmail.com
mailto:andreas.siggelkow@rwu.de


IMPROVING HARDWARE SECURITY THROUGH ENCRYPTION OF JTAG TAP PORTS:
AN ANALYTICAL COMPARISON OF ALGORITHMS, WITH A FOCUS ON RSA

Figure 1. JTAG Registers [1].

Almost all digital systems have a debug interface [10]
with different possibilities to attack the system [6].
This debug logic connects all sub-blocks in the system
by means of a shadow bus system in order to test or
debug it. This could act as a back door which is not
secured. To equip this back door and all connection
points of the debug bus with a lock, is the focus of the
system introduced in the following. It is just the base
system for different cipher/debug pairs, it is the base of
a system evaluation.The lock can be a cipher system.
Parallel to the debug problem is the update over the air
possibility in such systems, especially modern cars and
IoT. Also this back door can be secured by ciphering.
An emulator of this kind has been presented in [5].

The back door itself is the well known JTAG port
[8]. The element, which accesses all logic on chip is
the JTAG port together with the test access port (TAP)
controller. The TAP-Controller is implemented as a
finite-state-machine (figure 2). The states of this FSM
can be summarised as below.

• Test-Logic-Reset: This command resets JTAG cir-
cuits. It returns to this state whenever the TRST
(optional) signal is asserted. Remember that if
TMS is set to 1 for 5 consecutive TCK cycles, the
TAP controller will return to this state regardless
of the state it may be in. We can still reset the
circuit, then, even without the TRST signal.

• Run-Test/Idle: The FSM is in this state as it waits
for some test operations to finish.

• Select-DR/Scan and Select-IR/Scan: These are
temporary states that enable the corresponding
Register’s test data sequence to be started (the

selected IR is in the Select-IR/Scan state, and the
selected DR is in the Select-DR/Scan state).

• Capture-DR and Capture-IR: During this state,
data can be loaded simultaneously into each Re-
gister.

• Shift-DR and Shift-IR: In these states, the neces-
sary test data is serially loaded (or unloaded) into
(or from) the appropriate Register. If you look
at Figure 2, the TAP controller will remain in
this state as long as TMS is zero. One data bit
is shifted through TDI (or TDO) and into (or out
of) the chosen Register for each clock cycle.

• Exit1-DR and Exit1-IR: All parallel-loaded (from
the Capture-DR and Capture-IR state) or serial-
loaded (from the Shift-DR and Shift IR state) data
are held in the Register in this state.

• Pause-DR and Pause-IR: The FSM pauses here in
order to await an external operation.

• Exit2-DR and Exit2-IR: These states signify the
conclusion of the Pause-DR or Pause-IR operation
and allow the TAP controller to return to the Shift-
DR or Shift-IR state for additional data to be
shifted in (or shifted out).

• Update-DR and Update-IR: The test data stored in
the first flop of the Register (typically all Registers
have two flops for each bit; we’ll talk about that
later) is loaded to the second flop in this state.

The signal timing is defined as follows: The test mode
select (TMS) will be captured with every rising edge
of test clock (TCK). Also test data in (TDI) will be
taken with the rising edge of TCK. Contrary to this,
test data out (TDO) will be driven with the falling
edge of TCK. So, the wiring to a second chip, which
receives the output of the actual SoC, could be allowed
a delay of one half of the period of TCK.

III. ENCRYPTION VS HASHING

For handling the data during the exchange via JTAG,
there are 2 possible options. The data can either be
sent as a plain text or it can be sent in a form which is
completely unrecognisable. Sending the data as a plain
text is obviously very risky as a hacker with malicious
intent can easily get access to this data and it would
not remain a secret anymore. If the data is to be sent as
completely unrecognisable, there are again 2 options;
the data needs to be either encrypted or hashed.

A. Encryption

Encryption involves converting data into a format
using an algorithm and a key. The encrypted data,
also known as ciphertext can only be deciphered by
someone who possesses the corresponding decryption
key. Encryption is commonly used to protect data
during transmission (data, in transit). When stored on
devices or servers (data at rest). This means that the
encryption process is a reversible one and the original
text/data can be obtained by decrypting it.

32



MPC-WORKSHOP JANUAR 2024

Figure 2. TAP-FSM [1].

B. Hashing

Hashing, unlike encryption functions is a one way
process where data is transformed into a string of
characters called a hash value. This hash value acts like
a fingerprint ensuring the originality and authenticity of
the data. Carefully designed hashing algorithms create
collision hash values meaning it is computationally
difficult to find two inputs that produce the same hash
value. The property of collision resistance guarantees
that if an attacker modifies the data the resulting
hash value will change. This change serves as an
indication that the data has been altered, notifying the
recipient about information compromise. Hashing is
particularly useful, for verifying file integrity when
stored or transmitted over networks. By comparing the
received files hash value with its counterpart one can
confirm if any tampering has occurred.
When comparing Encryption and Hashing for the goal
of this research work, it is clear that encryption has to
be used to fulfill the aim. This is because the process
of hashing, though secure, is an irreversible process
and the original data can never be obtained once it is
hashed. When exchanging data through JTAG, it would
be computationally very heavy to generate the hashes
for every permutation of the message data and compare
it with the target hash. Considering an example of 16
bit hashed data being transmitted over JTAG, the worst
possible case scenario would be generating 65535 dif-
ferent hashes and comparing them with the transmitted
hash inorder to authenticate the data.

IV. COMPARING VARIOUS CRYPTOGRAPHY
ALGORITHMS

The debug interfaces opens a back door which can
be easily accessed by a hacker with a malicious intent.

To secure the debug interface, some type of cyberse-
curity algorithm is required. But the question arises
which one. A software based algorithm or a hardware
based. When it comes to software-based security, it’s
all about using programs and applications to protect a
system from malware, viruses, and other cyber threats.
Many businesses and organizations rely heavily on
software-based security because it’s affordable and
readily available. Examples of software-based security
include antivirus programs, encryption software, and
firewalls. While these can be effective in stopping
many types of cyber threats, they still have their
limitations. One major disadvantage of software-based
security is that it’s vulnerable to attacks from hackers
who know how to exploit software vulnerabilities. No
matter how sophisticated the software is, it will always
be prone to vulnerabilities. Another disadvantage of
software-based security is that it may not protect aga-
inst physical attacks. If a hacker gains physical access
to a computer or other device, software-based security
will not be able to stop them. While software-based
security can be effective in certain situations, it’s not
always the best solution. Meanwhile, hardware-based
security involves using physical devices to safeguard
networks, systems, and data. It offers a more robust
defense mechanism against cyber threats, as compared
to software-based security. Hardware-based security
includes devices such as smart cards, token-based
authentication, and biometric authentication. These de-
vices provide an extra layer of security that cannot
be duplicated by software. Hardware-based security
is more secure than software-based security. This is
because hardware devices are specifically designed
to perform security functions, whereas software-based
security can be compromised by vulnerabilities in

33



IMPROVING HARDWARE SECURITY THROUGH ENCRYPTION OF JTAG TAP PORTS:
AN ANALYTICAL COMPARISON OF ALGORITHMS, WITH A FOCUS ON RSA

the software. Additionally, hardware-based security
devices can protect against physical attacks and are
inherently more difficult to hack. Before choosing a
perfect cybersecurity algorithm, it has to be made sure
that the correct algorithm is chosen by weighing the
pros and the cons. The first decision would be whether
to select a symmetric cryptography algorithm or an
asymmetric one. Symmetric Cryptography employs a
single key for both the encryption and decryption pro-
cesses. It is just like a lock that can be unlocked using
the same key used to lock it. Similarly, in symmetric
cryptography, the sender and receiver share the same
secret key, which is utilized to encrypt and decrypt the
data. As a consequence, this method is highly effici-
ent and suitable for securing large volumes of data.
However, the main challenge lies in the secure dis-
tribution of the shared key among the communicating
parties. Without proper measures, the secrecy may be
compromised, leading to vulnerabilities. On the other
hand, asymmetric cryptography, also known as public-
key cryptography, operates with a pair of distinct yet
mathematically linked keys. This method involves a
public key, accessible to anyone, and a private key,
tightly held by its owner. To borrow an analogy, picture
a locked mailbox where anyone can drop a message
using the public key, but only the owner possesses the
private key to open and access the contents within.
With this mechanism, data can be encrypted with
the recipient’s public key and decrypted with their
private key. One notable advantage of asymmetric
cryptography is that it eliminates the need for secure
key exchange. Nevertheless, it is computationally more
intensive, making it less suitable for encrypting large
amounts of data compared to symmetric cryptography.
Since our priority is to make the encrypt the data
as securely as possible, and no large amount of data
to be encrypted, a public key cryptography will be
perfect for this algorithm. An algorithm is said to
have a “security level of n bit” if the best known
attack requires 2n steps.[14] The table I compares the
security level in bits provided by various cryptography
algorithms.

By analysing the above table, it can be concluded
that the RSA algorithm is perfect for the objective
of this thesis. The RSA algorithm is a asymmetric
cryptography algorithm which gives it an edge over
the AES and the 3DES algorithms. Even though the
RSA algorithm requires sizeably longer keys than the
Elliptic Curve Algorithms and the same length of keys
as the Discrete Logarithm Algorithms; the complexity
of the algorithms is what makes the difference. The
other algorithms are way to complex and require far
more computational power when compared to the RSA
algorithm. Such complexity is not required for this
application.

Figure 3. RSA example [2].

V. THE RSA ALGORITHM

RSA or Rivest-Shamir-Adleman, named after its
inventors Ron Rivest, Adi Shamir, and Leonard Ad-
leman, is a widely adopted cryptographic algorithm.
The RSA Algorithm is a cryptographic algorithm that
encrypts and decrypts messages through the use of
public and private keys. It is based on the mathema-
tical problem of factoring large integers into prime
factors, which is believed to be difficult for classical
computers. In RSA, each user has two different keys
- a public key and a private key. The public key is
shared with others, whereas the private key is kept
secret. Considering the widely used Alice and Bob
example; When Alice wants to send a message to
Bob, she will encrypt it using Bob’s public key. Bob
can then decrypt the message using his private key.
This way, even if someone intercepts the message,
they won’t be able to read it since they don’t have
Bob’s private key. This is demonstrated in the figure
3. Similarly, Bob can send an encrypted message to
Alice using her public key. Alice can then decrypt the
message using her private key. This method ensures
that only Bob and Alice can read the messages they
send to each other. RSA Algorithm is based on the
difficulty of factorizing large numbers into two prime
numbers. This makes RSA highly secure and strong
against most of the attacks. It has a security strength of
2048 bits and above, which makes it practically impos-
sible to break using conventional computing methods.
However, with the advancement in technology, even
2048 bits security may not be enough to withstand
attacks from quantum computers. In such cases, RSA
will have to be replaced with newer and stronger
cryptographic algorithms. Breaking RSA is considered
to be a daunting task due to the immense computational
power and time required. RSA encryption can only
be broken by factoring the large composite number
into two prime numbers. This means that if the key
used is long enough, it may take billions of years to
break the encryption.[14] Currently, it is believed that
it will be possible to factor 1024-bit values within
the next 10 to 15 years with the help of quantum
computing. To minimize the risk of such an attack,

34



MPC-WORKSHOP JANUAR 2024

Table I
DIFFERENT SECURITY LEVELS FOR CRYPTOGRAPHY ALGORITHMS [14].

Algorithm Family Cryptosystems Security Level (bit)
80 128 192 256

Integer Factorization RSA 1024 bit 3072 bit 7680 bit 15360 bit

Discrete Logarithm DH, DSA, Elgamal 1024 bit 3072 bit 7680 bit 15360 bit

Elliptic Curves ECDH, ECDSA 160 bit 256 bit 384 bit 512 bit

Symmetric Key AES, 3DES 80 bit 128 bit 192 bit 256 bit

it is recommended to choose the RSA parameters of
2048-4096 bits. Even though RSA is considered to be
highly secure, there have been instances where security
breaches have occurred. One such attack was the Blei-
chenbacher’s attack, which exploited a vulnerability
in the RSA encryption implementation. This resulted
in the attacker gaining access to secure information,
which highlights the importance of proper implemen-
tation of RSA. Another challenge is the susceptibility
of RSA to side-channel attacks. These attacks can
occur when an attacker measures the physical charac-
teristics of the system, such as power consumption,
to gain information about the key. Therefore, securing
the implementation of RSA is essential to prevent
such attacks. While the RSA algorithm offers robust
security, it has some challenges that make its im-
plementation complex. One of the biggest challenges
is computational complexity. Generating large prime
numbers and performing complex operations can be
time-consuming and resource-intensive. Additionally,
key management can be challenging, especially when
dealing with a large number of users. Safe key storage
and distribution are necessary to prevent unauthorized
access. The following steps illustrate the generation of
the key for the RSA algorithm:

1) Select two distinct prime numbers; Assume they
are p and q.

2) Compute their product “n” such that n = p*q.
3) Calculate the Euler’s totient function φ(n) =

(p− 1) ∗ (q − 1).
4) Select an “e” such that 0 < e < [φ(n)] and e &

φ(n) are coprime i.e gcd(e, φ(n)) = 1.
5) Calculate a “d” such that d.e ≡ 1modφ(n)
6) (n,e) is the Public key and is used for encryption

while (n,d) is the Private key and is used for
decryption.

Once the public and private keys are calculated, the
messages can be encrypted and decrypted as follows:
Let x be the data and y be the encrypted data. Then,
the encryption is done as y = xe mod n while the
decryption is done as x = yd mod n.

VI. DISCUSSION AND FUTURE WORK

Even though the RSA algorithm seems the best
option for securing the JTAG debug port, there are
some limitations when implementing it using VHDL.

As discussed in the previous section, a proper RSA
implementation would require keys that are atleast
1024 bits long. But, the integers in VHDL 2008 are
capped at 32 bits while the integers in VHDL 2019 are
capped at 64 bits. This obviously poses an issue as the
key can not be declared in VDHL. For this, there would
be a need to create new VDHL libraries which support
such large integers. The implementation of the RSA
algorithm also involves many complex mathematical
operations, e.g. it involves the exponential operator,
which is cannot be synthesized by an FPGA. Hence
this needs to be worked around when implementing
the RSA algorithm using VHDL. Another thing that
comes into one’s mind while implementing such an
asymmetric key algorithm is securing the keys by
means of a certificate. But one can argue that this is
not required with the RSA algorithm. The keys of a
proper implementation of RSA algorithm are atleast
1024 bits long and factorizing the public key in order
to obtain the private key is almost impossible. Hence,
securing the public key with a certificate would just add
unnecessary computational effort. One of the future
works in order to implement this, as discussed before,
is creating new libraries in VHDL. Creation of a server
to pre-compute and store the keys could also be done.
Although the keys for a specific implementation would
be stored in the implementation itself, creating such a
server could reduce the effort of computing the keys
every time just before the implementation. Hence, here
it has been discussed how can the encryption of the
JTAG TAP Port can be done through hardware ba-
sed encryption. Various methods have been discussed,
compared and the importance of the RSA algorithm
for this application has been discussed.

35



IMPROVING HARDWARE SECURITY THROUGH ENCRYPTION OF JTAG TAP PORTS:
AN ANALYTICAL COMPARISON OF ALGORITHMS, WITH A FOCUS ON RSA

REFERENCES

[1] Accessed on October 21, 2023. URL: https : / /
www. allaboutcircuits . com / technical - articles /
jtag-test-access-port-tap-state-machine/.

[2] Accessed on October 6, 2023. URL: https : / /
www . coengoedegebure . com / surviving - an -
infosec-job-interview-cryptography/.

[3] Accessed on October 1, 2023. URL: https : / /
www.xjtag.com/about-jtag/what-is-jtag/.

[4] Luca Baldanzi u. a. Cryptographically
Secure Pseudo-Random Number Generator
IP-Core Based on SHA2 Algorithm.
Applications in Electronics Pervading Industry,
Environment, Society – Sensing Systems
und Pervasive Intelligence), 2020. ISBN:
https://doi.org/10.3390/s20071869.

[5] Gregor Benz und Andreas Siggelkow. Imple-
mentation of a GPS and GSM module into
a Zynq Z7 SoC based emulator tracking sys-
tem. Workshop der Multiprojekt-Chip-Gruppe
Baden-Württemberg, 2020.

[6] Swarup Bhunia, Sandip Ray und Susmita
Sur-Kolay (Editors). Fundamentals of IP and
SoC Security: Design, Verification, and Debug.
Springer, Cham, Switzerland, 2017. ISBN: 978-
3-319-50055-3.

[7] Wei Hu u. a. An Overview of Hardware Se-
curity and Trust: Threats, Countermeasures
and Design Tools. IEEE TRANSACTIONS ON
COMPUTER-AIDED DESIGN OF INTEGRA-
TED CIRCUITS und SYSTEMS, VOL. X, NO.
X, 2021.

[8] IEEE Standard for Test Access Port and
Boundary-Scan Architecture. IEEE Std 1149.1-
2013 (Revision of IEEE Std 1149.1-2001) , vol.,
no., pp.1-444, 2013. ISBN: doi: 10.1109/IEEES-
TD.2013.6515989.

[9] Zhengato Jiang, Yang Zhan, Dan Chen und
Yumin Wang. Two methods of directly cons-
tructing probabilistic public-key encryption pri-
mitives based on third-order LFSR sequences.
https://doi.org/10.1016/j.amc.2005.01.097: Ap-
plied Mathematics und Computation, 2005.

[10] C.F. Kao und H.M. Chen. Hardware-Software
Approaches to In-Circuit Emulation for Em-
bedded Processors. IEEE Design und Test, 25
(5): 462 - 477, 2008.

[11] Bariş Bülent Kirlar und Melek Çİl. On the k-th
order lfsr sequence with public key cryptosys-
tems. https://doi.org/10.1515/ms-2016-0294: De
Gruyter, 2017.

[12] Paul Kocher u. a. Security as a new dimensi-
on in embedded system design. IEEE Procee-
dings. 41st Design Automation Conference,
2004. ISBN: 1-51183-828-8.

[13] Kyungroul Lee, Yeunsu Lee, Hyeji Lee und
Kangbin Yim. A Brief Review on JTAG Security.

DOI: 10.1109/IMIS.2016.102: 10th Internatio-
nal Conference on Innovative Mobile und Inter-
net Services in Ubiquitous Computing (IMIS),
2016. ISBN: 978-1-5090-0984-8.

[14] Christof Paar und Jan Pelzl. Understanding
Cryptography. Springer, 2010. ISBN: 978-3-642-
04101-3.

[15] Keun-Young Park, Sang-Guun Yoo und Ju-
ho Kim. Debug Port Protection Mecha-
nism for Secure Embedded Devices. DOI:
10.5573/JSTS.2012.12.2.240: Journal of Semi-
conductor Technology und Science, 2012.

[16] Sang Guun Yoo, KEUN-YOUNG PARK und
Josphine Kim. Software Architecture of JTAG
Security System. WSEAS Transactions on Sys-
tems, 2012.

Soham Sanjay Dekhane received his
B.Tech. degree in Electronics and Telecom-
munication Engineering from Symbiosis
International (Deemed) University, India in
July 2021. Since September 2021, he is
pursuing his Master’s degree in Electri-
cal Engineering and Embedded Systems at
Hochschule Ravensburg-Weingarten.

Andreas Siggelkow received the academic
degree Dipl. -Ing. degree in 1988 from
the University of Karlsruhe. In 1996, he
obtained his doctorate at the University
of Stuttgart for Dr. -Ing. From 1996 to
2007 he worked for Infineon on speci-
fications for base-band processor ASICs.
Since 2007, he is a professor for ASIC-
Design and Computer Architecture at the
Hochschule Ravensburg-Weingarten.

36

https://www.allaboutcircuits.com/technical-articles/jtag-test-access-port-tap-state-machine/
https://www.allaboutcircuits.com/technical-articles/jtag-test-access-port-tap-state-machine/
https://www.allaboutcircuits.com/technical-articles/jtag-test-access-port-tap-state-machine/
https://www.coengoedegebure.com/surviving-an-infosec-job-interview-cryptography/
https://www.coengoedegebure.com/surviving-an-infosec-job-interview-cryptography/
https://www.coengoedegebure.com/surviving-an-infosec-job-interview-cryptography/
https://www.xjtag.com/about-jtag/what-is-jtag/
https://www.xjtag.com/about-jtag/what-is-jtag/

	Introduction
	JTAG
	Encryption vs Hashing
	Encryption
	Hashing

	Comparing various cryptography algorithms
	The RSA Algorithm
	Discussion and Future Work
	Biographies
	Soham Sanjay Dekhane
	Andreas Siggelkow


